Kullback-Leibler divergence
KL 散度
KL散度(Kullback-Leibler divergence),也称为相对熵,是一种度量两个概率分布相对于彼此差异的统计工具
正态分布的KL散度推导
假设我们有两个正态分布,$P$ 和 $Q$,其中:
- $P \sim \mathcal{N}(\mu_P, \sigma_P^2)$
- $Q \sim \mathcal{N}(\mu_Q, \sigma_Q^2)$
KL散度的定义
对于连续变量,KL散度的定义为: \(\text{KL}(P \parallel Q) = \int p(x) \log \frac{p(x)}{q(x)} \, dx\)
正态分布的概率密度函数
正态分布的概率密度函数为:
\[p(x) = \frac{1}{\sqrt{2\pi \sigma_P^2}} e^{-\frac{(x-\mu_P)^2}{2\sigma_P^2}}\] \[q(x) = \frac{1}{\sqrt{2\pi \sigma_Q^2}} e^{-\frac{(x-\mu_Q)^2}{2\sigma_Q^2}}\]对数项展开
代入$p(x)$和$q(x)$到对数中,展开得到:
\[\log \frac{p(x)}{q(x)} = \log \frac{\sigma_Q}{\sigma_P} + \left(\frac{(x-\mu_Q)^2}{2\sigma_Q^2} - \frac{(x-\mu_P)^2}{2\sigma_P^2}\right)\]展开平方项
接下来,我们展开两个平方项:
\[\frac{(x-\mu_Q)^2}{2\sigma_Q^2} - \frac{(x-\mu_P)^2}{2\sigma_P^2} = \frac{x^2 - 2x\mu_Q + \mu_Q^2}{2\sigma_Q^2} - \frac{x^2 - 2x\mu_P + \mu_P^2}{2\sigma_P^2}\] \[= \left(\frac{1}{2\sigma_Q^2} - \frac{1}{2\sigma_P^2}\right)x^2 + \left(\frac{2\mu_Q}{2\sigma_Q^2} - \frac{2\mu_P}{2\sigma_P^2}\right)x + \left(\frac{\mu_Q^2}{2\sigma_Q^2} - \frac{\mu_P^2}{2\sigma_P^2}\right)\]考虑期望和方差
代入期望和方差值:
- 期望 $E[x] = \mu_P$
- 期望 $E[x^2] = \sigma_P^2 + \mu_P^2$
用$E[x]$代替$x$,$E[x^2]$代替$x^2$并执行积分: \(\text{KL}(P \parallel Q) = \int p(x) \left[ \log \frac{\sigma_Q}{\sigma_P} + \frac{\sigma_P^2 + (\mu_P - \mu_Q)^2}{2\sigma_Q^2} - \frac{1}{2} \right] dx\)
由于 $p(x)$ 是 $x$ 的概率密度函数,整个积分相当于公式中的系数求和: \(\text{KL}(P \parallel Q) = \log \frac{\sigma_Q}{\sigma_P} + \frac{\sigma_P^2 + (\mu_P - \mu_Q)^2}{2\sigma_Q^2} - \frac{1}{2}\)
Leave a comment